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Abstract-The previously undetermined constant A is evaluated unambiguously and a g<.:n<.:r.\l 
method of performing such evaluations is given . The atomic radii of the alkali metals 111 thl! solid 
state nre calculated from the compressibility parameters of the metals through :1n evalu:ltion of the 
excluded volume, beth, o. The values obtained arc in excellent agreement with both the Slater ~nd 
Bragg values. It is shown that on compression, the volume decrease is due to the disappearance of the 
defect volume and the internal volume in the aggregates and that up to about 100,000 kg/cm~ for 
lithium, sodium, potassium and rubidium and to about 23,000 kg/cm2 for cesium the radii of the 
alkali metals probably do not decrease. 

INTRODUCTION 

h ... A previolls publication(l) (herein called I) it has 
been shown that the alkali metals obey Tait's law 
quite exactly and that from the Tait coeHicients, 
J and L, the volume at constant temperature e.ln be 
determi ned preciscly from thc pressure, in t :.e 
whole range investigated, that is, up to 100,000 
kg/em2• While this information is important, the 
utility of the determination of the Tait coeffi
cients can be extended much further to ~ive us a 
deeper insight into the nature of the soli,1 state. 
This in formation is the ollteome of the fact that 
the Tail equation, which was first proposed 'as all 
erripiricallaw(2) has been theoretically derived(3,4) 
from the general association equation of st:tte(5) 

Pv 

RT I-(o/v) 
(1) 

In the Association thcory (see Rcf. 7) solids are 
considered to consist of an agglomerate of small 
aggregates of atoms (mosaic crystal). Each of these 
aggregates has perfect order and consists of a 
number of unimers (atoms here). The aggregates 
arc of different sizes and are connected by defect 
spaces. The number of unimers in a given weight 
is the stoichiometric number of formula moles 
called here formoles. The number of aggn:g;.tcs or 
particles or j-mers is a significant quantity called 
the a\'molity (Avogadro moles) in the theory. 

This paper is devoted to an exposition of such 
insights and to computations derived from them. 

EQUATIONS AND COMPUTATIONS 

From the derivation of Tait's Law the following 
relationships emerge(4) 

J = (v-o) /c/> L x6xNx (2) 
x 

where N x is the number of particles in moles of and 
size x per gram and · L = (RTw)/MO L x6::;Nx (3) 

L:.Nx is the total number of particles per 
gram 

Ii = sum of the excluded volume per gram 
= "'Z6xNx 

v = specific volume 
P;R, T have their usual meaning 

>4< Present address: St. Francis College, Brooldyn, N .Y. 

z 

where J and L are the Tait's coefficients 
w = weight of the sample = 1 g here 

MO = Molecular 'weight of the I -mer, here 
the at. wt. 

c/> = Av(L{1)evIJ where A is an un
determined integration constant. 
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These equations and the general equation of 
state enable us to derive equations for some of the 
internal variables(4) of solids: namely 

wRTJ<P 
(v - I» = -L-M-O-

ARTwvevlJ 

MO 

r fO JPc/> ' AwPvevl J 

~NI: =: M OL = MO 

'Z.vNx wjMO 
Zn=---=--

'ZNx 'ZNx 

L e- vlJ 

JPc/> APv 

(4) 

(5) 

(6) 

where (v - E) is the defect volume and Zll is the 
number average degree of association. 

Since as originally derived A is an undetermined 
integration constant, the fi rst computations were 
of the values of (v-E) jA , (Z1lA) and C/>jA as a 
function of pressure. The calculations were carried 
out on an IBM 1620 computor and t he input 
consisted of J,L,R,T,w,Mo,II and the p ressure 
range. H is the integration constant in the in
tegrated form of T ait' s equation as evaluated in 1. 
Table 1 summarizes the values of the input 
variablcs. Except in the case of potassium where 
the Br II values (sec I) were used, the combined 
Br II and Dr III values for J andL as derived 
from Bridgman's Jata were chosen. T he data from 

the two sets were combined in the following man
ner. F or each set separately (Br II and Br III) a 
set of equally spaced values of P vs . dPjdv was 
calculated from the experimental data over the 
range covered. T hese calculated values from the 
separate sets were then combined to find the best 
values of J and L for the combined set. The raw 
data could not be combined since they covered 
different ranges and were given at different inter
vals. In this way all the data were used and the best 
values derived therefrom. 

In calculating the values of J and L we noted 
Bridgman's assertion that these were room tem
perature values. However he docs not identify this 
temperature further. In I , since the temperature 
docs not aI;pear explicitly, this posed no problem, 
although minor variations in the room tem
perature in Bridgman's work would have the 
efreet of introducing small irregularities into the 
curves. Perhaps some of the apparently systematic 
variations in some of the curves in I, notably in 
the case of potassium, can be traced to systematic 
variation of this sort during the various experi
mental runs. In the calculations in this paper we 
must usc the temperature explicitly and have 
chosen room temperature as 300oK. This choice is 
undoubtedly wrong but a reasonable choice must 
be made. 

r n this paper we will confine ourselves to a con
sideration of pressure effects at constant tem
perature and an examination of the Bridgman data 
previously analy~cd in 1. The interesting results of 

Table 1. Vallies t of the input pm'allleters f or the defmlli7lfllion of (v-E)jJ1, Z7I.I1, and ,PIA. 
Pressure rauge 0-100,000 hgjcm2 (e.vcept as note.l). Temperatllre 300°K, (room temperature) . 

R (gas cOllstant) = 84·783 (!lg /cm2)cm3 1Il01eoC 

Hx 10- 6 

M etal MO (at. w t.) 1(cm3) L(kg/cm 2) (kg/cm2) Sourcet 

Lithium 6·939 0'3721 05* 24211 '7* 3'62242* Br II-Br III 
Sodium 22 ·9898 0'1 85566 14416'8 3 ·25935 Dr II- Br III 
Potassium 39'102 0 ·184129 3453 ·65 2 '12937 Dr II 
Rubidium 85·47 0'104465 3660 ·75 1·97998 Br II- Br III 
Cesium low 

pressure 0-23,000 132 ·91 0'112291 5453'45 0 '58229 

'" The numbers in these columns are truncated. Computations were made using a minimum of 8 d igits . 
In certain cases 1 5 or 20 d igits were used. 

t The determination of these " alues is described in Ref. 1. T he weight of all sample 1U- was taken as 1 g 
so that thc volumes calculated were the speci fic volumes. 
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FIG. 1. Pressure vs. number-average degree of assoeia
eiation, ZlI, times A for lithium, sodium, rubidium and 

potassium. 

BEECROFT and SWENSON(6) on sodium at a variety 
of temperatures and pressures will be analyzed in 
a subsequent publication. 

Evaluation of A 
The first calculations were of (v-E)JA and 

ZnA as given by equations (4) and (6). The 
results of these calculations are shown on Figs. 
1,2 and 3. As can be seen the curve of Z1lA shows 
a minimum. This implies that on the application 

of pressure the degree of association of the solid 
first decreases to a minimum ;...::ld then increases. 
At first glance this appears impossible... but careful 
examination shows that it is Io:sical. One must ;;sk 
first what is meant by the d,;gre~ of associ:ltion of a 
solid. From the discussion in I, one sees t:1a: 
essentially the structure of a liquid and a solia are 
alike: both consist of small particles separated by 
defect space. The essential difference is that the 
liquid particles exhibit approximate 5-symmctry 
while the solid particles have 3, 4 or 6 symmetry. 
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From the fact that particles with approximate 5 -sym
metry cannot totally fill space but form a more or 
less irregular body with many internal voids, arise 
the special properties of liquids, while the fact that 
particles with a regular 3, 4 or 6 symmetry can fill 
space and occupy fixed positions give rise to the 
properties of solids. Solids (with certain exceptions) 
generally consist of a mosaic of crystallites. As 
pressure is applied, these crystallites are distorted, 
that is they lose symmetry. The loss in symmetry is 
not micro-uniform throughout all the mass of the 
solid but micro-heterogeneous. In essence what we 
arc saying is that the average size of these particles, 
each of perfect symmetry, is broken down to 
smalier particles also each of perfect symmetry. 
This entails a decrease in the average degree of 
association. Another way of looking at this proeess 
is from energy considerations. An increase in 
pressure results in an increase in potential energy 
in the solid . This energy is stored as broken bonds. 
I f bonds break this entails a breakup of the crystal
lite particles. 

Understanding now what is happening under 
the application of pressure, the question is, what is 
the meaning of the minimum? To answer this 
question we proceed as follows: at the minimum 
the value of (aZlI/ap)T is zero; hence taking the 
derivative of equation (6) we have 

(
OZIlA) 0 -- = -[l/Pv exp(vfJ)] = 0 

oP T DP 
(7) 

carrying out the operation and simplifying we have 

~ = (~+~)~ 
P v J OP 

Inserting Tait's equation 

( Ov) J - - ---
oP '1' L+P 

and simplifying we have as eonditions at the mini
murp. that 

Vruln J 

Pruln L 

Let us now proceed further. 
It has been shown(7) that 

p 

1 
Zw =

v</> 

F4 • I Si( 

(8) 

(9) . 

where Zw is the weight average degree of associa
tion. From equation (6) 

L 
ZlI =--

JP</> 

when Zw = Zn then 

v J 

P L 
(10) 

From the identity of equation (10) with equation (8) 
we see that at the minimum in the Xu curve, 
ZIl = Zw, i.e. the weight-average lkgree of 
association is equal to the number-average degree 
of assoeiation. The question then }s under what 
condition are the weight and number awrages 
equal? It is well known that this occurs only when 
the substance under investigation is homogeneous 
in molecular weight. Considering the fact that the 
solid under pressure is decreasing in molecular 
weight, the simplest and most logical assumption 
to make is that at the minimum 

Zn = Zw = 1 (11) 

If this is the case then the integration constant 
A can be evaluated. ZnA is known anu hence 

(ZIlA)mln = A (12) 

This gives us an unambiguous general method 
of deriving the value of A. 

CampI/la/ion of A 
There are several methods of varying precision 

of evaluating A from the experimental d,\ta. 
(1) One can use equation (S) together with the 

integrated Tait equation 

(P+L) exp(vjJ) = II 

to get 

P = L log II -L log(P+L) 

or v = 1l0gII-llog[(LvjJ)+L] 

(13) 

(1+) 

(15) 

These equations can be solved for P or v by 
iteration. 

(2) Graphically one can plot P/v vs. P and deter
mine the value of 

P L 

v J 
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Table 2. EvaltlatiolL of A and the parallleters at the minimum in the Zn curve 

Pmln 'VOlin 

Metal (kg/cm2) (cm3) Ax lOG .pmin ZWmln 

exact to 10 digits 
Lithium 84,819'3* 1 '303580* 0'272219* 0'767118* 1 
Sodium 55,284'8 0 '711600 0'549218 1'405284 1 , 
Potassium 16,239'1 0·865777 0'645614 1-155032 1 
Rubidium 16,807'0 0'479612 1'25809+ 2·085020 1 
Cesium low pressure 17,608'1 0'362564 6·203762 2·758131 1 

* These values nre truncated values from the computation in which 20 digits were used. 

(3) One can interpolate in a table of P/v vs. P 
the value of L/J using Lagrangian interpolation. 

of the unit cell. Hence in terms of the radius, r, of 
the atom the length, I, of the unit cell is 

(4r)2 = 3/2 

4 
I=-r 

y'3 

All these computational methods have been 
tried. The test of the precision of the answer is to 
calculate Zw which should be equal to 1. The or 
methods in 1 arc computationally difficult since 
obtaining the logarithm to a sufficient number of 
digits is difficult. Method 2 is inherently im
precise, although by this method very good 
preliminary results were obtained, the calculation 

since four atomic radii lie along the unit cell dia
gonal. The volume of the unit cell is then 

of Zw showcd that they werc imprecise. We used 
method 3 which is very precise. The results are 
reported in Table 2. 

ATOMIC RADII 
Since we now know beth, E, for the alkali 

metals many other quantities become accessible to 
calculation. One of these is the atomie radius. Beth 
is the excluded volume of the metal, i.e. it is the 
volume of the associated particles in the metal. 
These particleg may be considered to be composed 
of spherieal atoms packed in a particular array. In 
the alkali metals this array is b.e.c. This configura
tion in addition to the atoms also has internal free 
space; we will call this space the internal volume of 
the particles. We now differentiate between the 
total volume, v; the defect volume, (v-E), which 
is thy volume between particles, the excluded 
,"olume, E; and finally the internal volume which 
is the space in E not occupied by the spherical 
atoms. To obtain the atomic radii we must first 
evaluate how much of the excluded volume is the 
internal volume. 

In a body-centered array, the atoms conceived 
as spherical balls are touching along the diagonal 

64 
/3 = --r3 

3y'3 

Since for body-centered packing each unit cell has 
two atoms the volume per atom is 

32 
volume per atom = --r3 

3 \ / 3 

The yolume per Avogadro num.ber of atoms (for
mole) is 

32 
vol/formole = --r3No 

3v13 

Also since E is the excluded volume per gram, 
ElMO is the excluded volume per formole where 
MO is the molecular weight (here at. wt.) . Hence 

32 
EMo = --r3No 

3y'3 

solving for r we have for a b.e.e. array 

( 
3v13 )1/3 

r= --EMO 
. 32No . 

(16) 
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FIG. 4. Pressure vs. excluded volume, E , for the alkali 
metals. Sec text for discussion of p otassium cun·c. 

The corresponding formula for a f.c.c. configura
tion is 

( 
EMO )1/3 

r = 4y'(2No) 

while for a simple cubiC:array it is 

r = (EMO) 113 

SNo 

(17) 

(IS) 

'Ve now assume that the associated particles in 
the solid are large enough so that the end effects 
are negligible. Using our value of A calculated at 
the minimum point, we calculate E at 1 atm. using 
equation (4). Thus we arrive at the values givcn in 

'" .' .. 

Table 3. As can readily be seen these values are 
as good as the SLATER(8) or the BruGc(9) values 
which are derived from X-ray measurements. 

I n Fig. 4 is shown a graph of the excluded 
volume, E , as a functio n of the pressure. \Vhether 
the ma .. " imum in the potassium curve is rC:ll , is 
questionable. However we have alrea~y discussed 
the fact that the potassium values ~n.: not good . The 
excluded volume decreases beeat!se as the particles 
decrease in size the internal volume is rek,:scJ and 
becomes part of the defect volume. As the p;'essure 
increases the defect volume also decrcases. This 
means that the decrease in volume with incr.:ase 
in pressure is generally due to a squeezing out of 
defect volume. In T able 4 it can be seen that the 
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excluded volume approaches the total volume in 
magnitude as the pressure is increased. However 
the question still remaining is: are the atoms 
compressed as the pressure is increased to 100,000 
kg/cm2? If the atomic radius could be un
biguously calculated at the various pressures an 
answer might be forthcoming to the question. 
However the problem is; what is the arrangement 
of the atoms at increasing pressure? We have seen 
that we could assume that at one kg/em2, the atoms 
are arranged in a body-centered lattice and we 
could get very good values for the atomic radii 

compared to the X-ray values. \Ve know some
thing about the atoms at one other point. Here the 
crystal-array symmetry has been disrupted and the 
atoms exist as I-mers. \Ve have calculated the 
atomic radius at this point under several assump
tions: first, we have assumed that their volume is 
413m3• This is undoubtedly wrong be ... ,- '.,$C 

spherical atoms cannot be packed in a volume with 
no free space so that this value should be too high, 
Secondly, we have calculated the radius as if body
centered symmetry still existed. This also is wrong 
because we know that this symmetry docs not 

Table 3. Excluded volume, Ii and atomic radii of the all <ali metals. 

~,.essure = 1 kg/cm2, temperature = 300oK, No = 6 '02283 X 1023 

Metal 

Lithium 
Sodium 
Potassium 
RlibiJium 
Cesium low 

pressure form 

1> (cm3) 

1'585320" 
0,867506 
0'876645 
0·524303 

0'457988 

r (A) 
(th is raper) 

1·43675" 
1·75192 
2·0%5+ 
2'29461 

2'54125 

.. Truncatcd from 20 digits used in calculation. 

r (A) 
(Slater) 

1,4·5 
1·80 
2·20 
2 ·35 

2·60 

r (A) 
(Bragg) 

1 ,SO 
1'77 
2·07 
2 ·25 

2'37 

Table 4. Total, excluded and dcfect volullles at 1 alld 100,000 hglcm2• 

Calculated dcnsities at 1 kg/cm2 

Density 
Excluded calculated Density rubber 

Pressure Total volume volume Defect volume = l/v at handbook" 
Metal (kg/cm2) (vlg) (E/gm) (v-E/g) 1 kg/cm2 

Lithium 1 1·86351 t l'58532t Q'27819t 0'537t 0 '53+ (20°C) 
100,000 1·25508 1'21855 0·03652 

Sodium 1 1·00401 0,86751 0 ·13650 0 ·996 0·971 (20°C) 
100,000 0·61963 0·60901 0·01062 

Potassium 1 1'18282 0 '87664 0 ·30617 0·845 0,862 (20°C) 
100,000 0-55689 0-55208 0'00481 

Rubidium 1 0,65739 0·52430 0'13308 1'521 1'532 (20°C) 
100,000 0·30814 0·30594 0,00220 

Cesium 1 0'52+46 0·45800 0'06647 1·907 1·8785 (15°C) 
23,000 0·33897 0·33074 0·00824 1 '873 (20°C) 

• IIalldbooh of Chemistry alld Physics, 45th cd. (1964-65). The Chemical ,Rubber Co., Cleveland, Ohio. 
t Rounded off from 20 digits. 
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Table 5. Appro . ...:imate values of radii at the minimum point 

Radius in A Radius in A 
Pressure at calculated calcul:l tl!d as Average R:ldius in A 
minimum from if in radius at this p:lper at vIS 
(kg{cm2) ( 4{3)1Tr3 b .c.c. symmetry minimum 1 kg/cm2 at minirqum 

Lithium 84,81 9'81 1'513 1-331 1·422 1 '437 ! '03+3 
Sodium 55,284'75 1'8·17 1'62+ 1·786 1 ·752 l'd2~9 
Potns5iunl 16,239'13 2 '339 2'057 2 '198 2·il99 : '\J~SS 
Rubidiu m 16,807 ·03 2·501 2·200 2·351 2·295 1 ·u383 
Cesium 17,608'07 2 '646 2'327 2··tli7 2'541 1 '(J30~ 

exist. Thirdly, we have taken an average of these 
two results. This is also wrong since averaging 
cannot remove the errors. Nonetheless the values 
(Table 5) obtained arc comparable with those in 
Table 3 and show that the atoms arc not likely to 
be squeezed at these pressures. At high pressures 
they undoubtedly are, however, squeezed since 
the ;'atio of the total volume to the excluded 
volume is approaching 1. It is noteworthy that at the 
minimum point the ratio viE is approximately 
constant. 

In Table 4 is also shown a calculation of the 
density compared to the published values. The 
densities are calculated from the volumes computed 
by Tait's Law. The comparison is good considering 
that they are based on the whole compressibility 
curve. 

; ;;v:s; 

Further work is in progress. 
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